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Introduction:

In this paper, we study the half linear neutral difference equations
A am[4* [x(m - pmx()]] |+amx (am) =0 :n=n, 1)

We define the function z(n) = x(n) — p(n)x(z(n)). @)
Here we will assume that the following conditions are satisfied.
H,. a(n), p(n) € C([n,,),R"),q(n) € C([n,, =), R),» >0 is the quotient of odd positive integers.

H,. z(n),o(n) are the continuous sequence o(n) <n,lim__ z(n)=oo,lim . o(n)=o

1
£ 1 ;
H.,. — | =

-3w)
where a(n) is a continuous positive sequence. By the solution of (1) we mean a nontrivial sequence
x(n) e C(IN,,=),R),N, >n, for which
x(n) — p(n)x(z(n)) € C*([N,,»), R),a(n)(A%*z(n))” € C*([N,,=),R), and (1) is satisfied on some interval
(IN,,),R), where N, >n,. A non trivial solution of (1) is said to be oscillatory if it has arbitrarily large

zeros, otherwise is said to be non oscillatory that is eventually positive solution or eventually negative
solution. The purpose of this paper is to obtain necessary and sufficient conditions for thee oscillation of all
solutions of (1).

n—o

Lemma:l

Suppose that p,qeC[R",R"],q(n) <n;n>n,,limg(n) = and

liminf S () >% 3)

77 q)

Then the inequality Ay(n)+ p(n)y(q(n)) <0 has no eventually positive solutions, and the inequality
Ay(n)+ p(n)y(q(n)) =0 has no eventually negative solutions.
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Lemma:2

Suppose that H,-H, holds, g(n) >0and let x(n) be an eventually positive solution of (1) then there are only
the following two cases for (2)

(i) z(n)>0,Az(n) > 0,A%z(n) >0, |:a(n) (Azz(n))y} <0,n>n >n,

(i) 2(n) > 0,Az(n) < 0,A%2(n) > O,[a(n)(Azz(n))q <0n>n, >n,

Main Results:
In this section, we give the main results.

Theorem:1

Suppose that H,-H, holds, 1< p(n) < p,, z(n) > n, q(n) <0 and there exists continuous sequence ,
a(n), #(n) such that a(n) > n, A(n) >n

1

s=F(n) v=s w=v py(Til(o-(W)))
H(n) =7"(a(B(n)) <n

a(n)-

liminf SV la(s) >0 (5)

s=n

i (O} I .
;mpy(rl(a(s)» NS (6)

Then every solution of (1) is oscillatory.

Proof: Suppose that (1) has eventually positive solution x(n) then we have

A[a(n) (Azz(n))y} >0, so by lemma there are only the following three cases for (2)
(i) z(n) <0, Az(n) > 0, A>2(n) <O, A[a(n) (Azz(n))y} >0,n>n, >n,
(i) z(n) > 0,Az(n) >0,A%z(n) <0, A[a(n) (Azz(n))y} >0,n>n, >n,

(i) z(n) < 0, Az(n) < 0,A%z(n) <0, A[a(n) (Azz(n))y} >0,n

\%

n, >n,
Case (i): From equation (2) we follows that

z(n) = x(n) — p(n)x(z(n))

x(n) = z(n) + p(n)x(z(n))

X(z(n)) = %

_x(n) _z(n)
XM =1 pon)
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x(z(n)) > —%
O ()
p(z ()
2 (o() ,
XM= = o) 7

Summing (1) from nto a(n)—-1, we get

a(n)-1

a(n)-1
) Al a@)[4° [x(9) - pEX(EN]] |+ 2. a(e)x (o(s) =0

a(n)-1 a(n)-1

3 A4 [x(9) - pEXEE] =~ X a6 (o(6)

a(n)-1

a(e(m)[A'2(a(m) | —am[az(m] =- 3 a6 (a(s))
By using equation (7), we get

y a(n)-1
—am[ A%z | == 2 1a(8) X' (o(s))

@ (o)
2 9O ey
@1 g(s))

> _27(7‘1(0(06(1’1)))) Z m

am)[a72(n)] < zy(r-l(a(a(n»»“g%
7 (= (o(a(m) “S 1q(s)|
am)  Z )

[Azz(n)]y <

[A%2(n) <

27(11(6(06(r1))))j7(°’(”)'1 19(s) | jy
a(n) S P (a(9))

[A%z(n) |<

2(z " (a((n)))) (“(”H |a(s) | ]7
a;(n) s=n py(T (O_(S)))

Summing the last inequality from n to g(n) -1

1

pOL ﬁ(“)lz(z- (O'(a(S)))) ‘& qv)] v
Z[Az<s)]< 2 e [ mj

Az(B() - Az(n) < 2(= o (@l BN S, —— (“%l#f
S gl T P )
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1

Az(n) < z(z (o (a(B(n))))) Z i ){ Z p”(z'_l(O'(V))))

e (0 qwl )
Ka(n) 2 <2 (o (e(AON) 2 — (z = ]
5 gl W)

A1 (@ )l )
Az(n) + z(H (n)) szn: x ()( szsl py(r‘l(a(v)))j >0

Where H(n) =z (a(a(B(n))))

By lemma and condition (4) the last inequality cannot has eventually negative solution. Which is
contradiction.

Case (ii) From (2) we get x(n)>z(n), n>n, >n,

x(o(n)) > z(o(n)) (8)
Summing equation (1) from n to a(n)-1
a(n)-1 a(n)-1

3 A[aE[a[x(6) - pEXEEN] [+ X o (o(s) =0

a(n)-1 a(n)-1

)y A as)[&° [x(9) - ps)x(e(s]] |- R CICIO)

- ” a(n)-1
a(e(m)| A*2(a() | —a(m[A%2(m) | == 3 a(s)x’ (o(s)

By using equation (8), we get
a(n)-1

—a(m[Az(n)| = - Z a(s)2’ (o (s))

a(n)-1

a(n)[ A’z(n)] < 2 la(s) | 27 (a(s))

a(n)-1
[220)] < 5 214917/ (0(5)

a(n)-1 ,
( la(s) | Z’(G(S))j

s=n

[Azz(n)}

a7(”)

a(n)-1
[a%2(n)] < 220D [ > la(s) |]

a’(n)
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Summing the last inequality from n, to n-1

n-1 n-1 a(s)-1
S arg(s)< 3 H9C) ( 3 1qw) |j

s=n, s=n, a’ (S)

2(n) - 2(n) < 5 AT (i| q) |j

T ar

1

a(s)-1
( 2. 1aw) Ij

As n — o and in view of condition H, and equation (5) the last inequality leads to a contradiction.

2 - 2(n) < 2o () Y

a’ (s)

Case (iii) In this case a(n)(A*z(n) ” <0 and non decreasing for n > n, hence it is bounded.
T

Summing equation (1) from n, to n-1

> A a@[47[x(5) - pEOXEN]] |+ 2 aEK (o() =0

s=n, s=n,

EA[a(S) [ [zo]] |- -5 4e)x (o(5))

s=n; s=n;

am[azm] -an)[4%2(n)T ==3" a(s)x" (o(5))

s=n,

By using equation (7), we get

—an)[4%20)] == 3 19(6) ¥ (0(5)

s=n,

2 ((o(s))
- s,znl'q()'p (7 (o(9))

> —27(71(0(”)))2%

As n — oo and in view of (6) the last inequality leads to contradiction.
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